++in
Set operations
Core whose arms contain a variety of functions that operate on set
s. Its
sample accepts the input set
to be manipulated.
Accepts
A set
.
Source
~/ %in
=| a=(tree)
|@
Examples
> ~(. in (sy "asd"))
<16.ufw [a=?(%~ [?(n=@tD n=#1) l=nlr(?(@tD #1)) r=nlr(?(@tD ^#1.?(@tD #1)))]) <123.zao 46.hgz 1.pnw %140>]>
++all:in
Logical AND
Computes the logical AND on every element in a
slammed with b
, producing a
flag.
Accepts
a
is a set
, and is the sample of +in
.
b
is a gate that accepts a noun and produces a flag.
Produces
A flag.
Source
++ all
~/ %all
|* b=$-(* ?)
|- ^- ?
?~ a
&
?&((b n.a) $(a l.a) $(a r.a))
Examples
> (~(all in (silt ~[1 2 3 4])) |=(a=@ (lth a 5)))
%.y
> (~(all in (silt ~[1 2 3 4 5])) |=(a=@ (lth a 5)))
%.n
++any:in
Logical OR
Computes the logical OR on every element of a
slammed with b
, producing a
flag.
Accepts
a
is a set
, and is the sample of +in
.
b
is a gate that accepts a noun and produces a flag.
Produces
A flag.
Source
++ any
~/ %any
|* b=$-(* ?)
|- ^- ?
?~ a
|
?|((b n.a) $(a l.a) $(a r.a))
Examples
> (~(any in (silt ~[2 3 4 5])) |=(a=@ (lth a 3)))
%.y
> (~(any in (silt ~[3 4 5])) |=(a=@ (lth a 3)))
%.n
++apt:in
Check correctness
Computes whether a
has a correct horizontal order and a correct vertical
order, producing a flag.
Accepts
a
is a set.
Produces
A flag.
Source
++ apt
=< $
~/ %apt
=| [l=(unit) r=(unit)]
|. ^- ?
?~ a &
?& ?~(l & (gor n.a u.l))
?~(r & (gor u.r n.a))
?~(l.a & ?&((mor n.a n.l.a) $(a l.a, l `n.a)))
?~(r.a & ?&((mor n.a n.r.a) $(a r.a, r `n.a)))
==
Examples
> ~(apt in ~)
%.y
> =a (silt ~[1 2 3])
> a
[n=2 l={1} r={3}]
> ~(apt in a)
%.y
> =z ?~(a ~ a(n 10))
> z
[n=10 l={1} r={3}]
> ~(apt in z)
%.n
Discussion
See section 2f
for more information on noun ordering.
++bif:in
Bifurcate
Splits set a
into sets l
and r
, which contain the items either side of b
but not including b
.
Accepts
a
is a set, and is the sample of +in
.
b
is a noun.
Produces
A cell of two sets.
Source
++ bif
~/ %bif
|* b=*
^+ [l=a r=a]
=< +
|- ^+ a
?~ a
[b ~ ~]
?: =(b n.a)
a
?: (gor b n.a)
=+ c=$(a l.a)
?> ?=(^ c)
c(r a(l r.c))
=+ c=$(a r.a)
?> ?=(^ c)
c(l a(r l.c))
Examples
> =a `(set @)`(silt (gulf 1 20))
> a
{17 8 20 13 11 5 19 7 15 10 18 14 6 12 9 1 2 3 16 4}
> (~(bif in a) 10)
[l=[n=11 l={17 8 20 13} r={5 19 7 15}] r=[n=12 l={18 14 6} r={9 1 2 3 16 4}]]
> `[(set @) (set @)]`(~(bif in a) 10)
[{17 8 20 13 11 5 19 7 15} {18 14 6 12 9 1 2 3 16 4}]
Discussion
Note that set
s are horizontally ordered by the mug hash of their items and vertically ordered by the double-mug
hash of their items. This means bifurcating the set of numbers (silt ~[10 20 30 40 50])
at 30
will not produce [{10 20} {40 50}]
, but rather [{20} {10 40 50}]
due to the tree structure resulting from their mug
hashes.
++del:in
Remove noun
Removes b
from the set
a
.
Accepts
a
is a set, and is the sample of +in
.
b
is a noun.
Produces
A set.
Source
++ del
~/ %del
|* b=*
|- ^+ a
?~ a
~
?. =(b n.a)
?: (gor b n.a)
a(l $(a l.a))
a(r $(a r.a))
|- ^- [$?(~ _a)]
?~ l.a r.a
?~ r.a l.a
?: (mor n.l.a n.r.a)
l.a(r $(l.a r.l.a))
r.a(l $(r.a l.r.a))
Examples
> `(set @)`(~(del in (silt ~[1 2 3 4 5])) 3)
{5 1 2 4}
> `(set @t)`(~(del in (silt ~['foo' 'bar' 'baz'])) 'bar')
{'baz' 'foo'}
> `(set @)`(~(del in (silt ~[1 2 3 4 5])) 10)
{5 1 2 3 4}
> `(set @)`(~(del in ~) 10)
{}
++dif:in
Difference
Computes the difference between a
and b
, producing the set of items in a
that are not in b
.
Accepts
a
is a set, and is the sample of +in
.
b
is a set.
Produces
A set.
Source
++ dif
~/ %dif
=+ b=a
|@
++ $
|- ^+ a
?~ b
a
=+ c=(bif n.b)
?> ?=(^ c)
=+ d=$(a l.c, b l.b)
=+ e=$(a r.c, b r.b)
|- ^- [$?(~ _a)]
?~ d e
?~ e d
?: (mor n.d n.e)
d(r $(d r.d))
e(l $(e l.e))
--
Examples
> =a (silt ~[1 2 3 4 5])
> =b (silt ~[3 4])
> `(set @)`(~(dif in a) b)
{5 1 2}
++dig:in
Address b in a
Produce the tree address of b
within a
.
Accepts
a
is a set, and is the sample of +in
.
b
is a noun.
Produces
The unit
of an atom.
Source
++ dig
|= b=*
=+ c=1
|- ^- (unit @)
?~ a ~
?: =(b n.a) [~ u=(peg c 2)]
?: (gor b n.a)
$(a l.a, c (peg c 6))
$(a r.a, c (peg c 7))
Examples
> =a (silt ~[1 2 3 4 5 6 7])
> -.a
n=6
> (~(dig in a) 7)
[~ 12]
> (~(dig in a) 2)
[~ 60]
> (~(dig in a) 6)
[~ 2]
> (~(dig in a) 10)
~
Discussion
For more on the tree addressing system, see section 1b.
++gas:in
Concatenate
Insert the elements of a list
b
into a set
a
.
Accepts
a
is a set, and is the sample of +in
.
b
is a list.
Produces
A set
.
Source
++ gas
~/ %gas
|= b=(list _?>(?=(^ a) n.a))
|- ^+ a
?~ b
a
$(b t.b, a (put i.b))
Examples
> =a (silt ~['foo' 'bar' 'baz'])
> `(set @t)`a
{'bar' 'baz' 'foo'}
> `(set @t)`(~(gas in a) ~['foo' 'foo' 'foo' 'foo'])
{'bar' 'baz' 'foo'}
> `(set @t)`(~(gas in a) ~['abc' 'xyz' '123'])
{'xyz' 'bar' 'baz' 'foo' 'abc' '123'}
++has:in
b in a?
Checks if b
is an element of a
, producing a flag.
Accepts
a
is a set, and is the sample of +in
.
b
is a noun.
Produces
A flag.
Source
++ has
~/ %has
|* b=*
^- ?
%. [~ b]
|= b=(unit _?>(?=(^ a) n.a))
=> .(b ?>(?=(^ b) u.b))
|- ^- ?
?~ a
|
?: =(b n.a)
&
?: (gor b n.a)
$(a l.a)
$(a r.a)
Examples
> =a (silt ~[1 2 3 4 5])
> (~(has in a) 2)
%.y
> (~(has in a) 6)
%.n
++int:in
Intersection
Produces a set of the intersection between two sets of the same type,
a
and b
.
Accepts
a
is a set, and is the sample of +in
.
b
is a set.
Produces
A set
.
Source
++ int
~/ %int
=+ b=a
|@
++ $
|- ^+ a
?~ b
~
?~ a
~
?. (mor n.a n.b)
$(a b, b a)
?: =(n.b n.a)
a(l $(a l.a, b l.b), r $(a r.a, b r.b))
?: (gor n.b n.a)
%- uni(a $(a l.a, r.b ~)) $(b r.b)
%- uni(a $(a r.a, l.b ~)) $(b l.b)
--
Examples
> `(set @tD)`(~(int in (silt "foobar")) (silt "bar"))
{'r' 'b' 'a'}
> `(set @tD)`(~(int in (silt "foobar")) ~)
{}
> `(set @tD)`(~(int in (silt "foobar")) (silt "baz"))
{'b' 'a'}
++put:in
Put b in a
Add an element b
to the set a
, producing a set.
Accepts
a
is a set, and is the sample of +in
.
b
is a noun.
Produces
A set
.
Source
++ put
~/ %put
|* b=*
|- ^+ a
?~ a
[b ~ ~]
?: =(b n.a)
a
?: (gor b n.a)
=+ c=$(a l.a)
?> ?=(^ c)
?: (mor n.a n.c)
a(l c)
c(r a(l r.c))
=+ c=$(a r.a)
?> ?=(^ c)
?: (mor n.a n.c)
a(r c)
c(l a(r l.c))
Examples
> `(set @)`(~(put in (silt ~[1 2 3])) 4)
{1 2 3 4}
> `(set @)`(~(put in `(set @)`~) 42)
{42}
++rep:in
Accumulate
Accumulate the elements of a
using binary gate b
.
Accepts
a
is a set
, and is the sample of +in
.
b
is a gate.
Produces
A noun.
Source
++ rep
~/ %rep
|* b=_=>(~ |=([* *] +<+))
|-
?~ a +<+.b
$(a r.a, +<+.b $(a l.a, +<+.b (b n.a +<+.b)))
Examples
> (~(rep in (silt ~[1 2 3 4 5])) add)
b=15
> `@t`(~(rep in (silt ~['foo' 'bar' 'baz'])) |=(a=[@ @] (cat 3 a)))
'foobarbaz'
++run:in
Apply gate to set
Produce a set
containing the products of gate b
applied to each element
in a
.
Accepts
a
is a set
.
b
is a gate.
Produces
A set.
Source
++ run
~/ %run
|* b=gate
=+ c=`(set _?>(?=(^ a) (b n.a)))`~
|- ?~ a c
=. c (~(put in c) (b n.a))
=. c $(a l.a, c c)
$(a r.a, c c)
Examples
> =s (silt ~["a" "A" "b" "c"])
> `(set tape)`s
{"A" "a" "c" "b"}
> (~(run in s) cuss)
{"A" "C" "B"}
++tap:in
Set to list
Flattens the set
a
into a list
.
Accepts
a
is an set.
Produces
A list.
Source
++ tap
=< $
~/ %tap
=+ b=`(list _?>(?=(^ a) n.a))`~
|. ^+ b
?~ a
b
$(a r.a, b [n.a $(a l.a)])
Examples
> ~(tap in (silt "foobar"))
"oafbr"
> ~(tap in (silt ~[1 2 3 4 5]))
~[4 3 2 1 5]
++uni:in
Union
Produces a set of the union between two sets of the same type, a
and
b
.
Accepts
a
is a set, and is the sample of +in
.
b
is a set.
Produces
A set.
Source
++ uni
~/ %uni
=+ b=a
|@
++ $
?: =(a b) a
|- ^+ a
?~ b
a
?~ a
b
?: =(n.b n.a)
b(l $(a l.a, b l.b), r $(a r.a, b r.b))
?: (mor n.a n.b)
?: (gor n.b n.a)
$(l.a $(a l.a, r.b ~), b r.b)
$(r.a $(a r.a, l.b ~), b l.b)
?: (gor n.a n.b)
$(l.b $(b l.b, r.a ~), a r.a)
$(r.b $(b r.b, l.a ~), a l.a)
--
Examples
> =a (silt ~[1 2 3 4 5])
> =b (silt ~[4 5 6 7 8])
> `(set @)`(~(uni in a) b)
{8 5 7 6 1 2 3 4}
> `(set @)`(~(uni in a) ~)
{5 1 2 3 4}
> `(set @)`(~(uni in `(set @)`~) b)
{8 5 7 6 4}
++wyt:in
Set size
Produces the number of elements in set a
as an atom.
Accepts
a
is an set.
Produces
An atom.
Source
++ wyt
=< $
~% %wyt + ~
|. ^- @
?~(a 0 +((add $(a l.a) $(a r.a))))
--
Examples
> ~(wyt in (silt ~[1 2 3 4]))
4
> ~(wyt in `(set @)`~)
0